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ABSTRACT

Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral
energy distribution. It is of common consensus the Synchrotron emission to be responsible for the low
frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays
and their polarization can provide a valuable tool to understand the physical mechanisms responsible
for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae
performed with the Imaging X-ray Polarimetry Explorer (IXPE), from which an upper limit to the
polarization degree IIx <12.6% was found in the 2-8 keV band. We contemporaneously measured the
polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis
disfavors a significant contribution of proton synchrotron radiation to the X-ray emission at these
epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac.

Keywords: acceleration of particles, black hole physics, polarization, radiation mechanisms: non-

thermal, galaxies: active, galaxies: jets

1. INTRODUCTION

Observations of astrophysical jets from supermassive
black holes offer unique opportunities to study ener-
getic multi-waveband emission processes in the Universe
(see e.g., Blandford et al. 2019). Blazars are a subclass
of active galactic nuclei (AGN) whose jets are aligned
within a few degrees of the line of sight. They are
often characterized by superluminal motion of bright
knots in their jets, and their emission, which is rela-
tivistically Doppler-boosted, exhibits extreme variabil-
ity across the electromagnetic spectrum (e.g., Hovatta
& Lindfors 2019). Their radio and optical emission is
significantly linearly polarized (e.g., Agudo et al. 2018b;
Blinov et al. 2021), which is attributed to synchrotron
radiation from relativistic electrons in the jet. The ori-
gin of the broad keV-to-TeV emission component is a
matter of current debate. Most studies interpret the
high-energy photons as the result of Compton scatter-
ing. The seed photons could originate from either the
jet’s synchrotron radiation (synchrotron self-Compton;
SSC) or from external radiation fields (external Comp-
ton; EC). This scenario has been supported by spectral
energy distribution (SED, e.g., Abdo et al. 2011) mod-
eling, energetic considerations (Zdziarski & Bottcher
2015; Liodakis & Petropoulou 2020), observations of
flux variations that are correlated across the wavebands

(e.g., Agudo et al. 2011a,b; Liodakis et al. 2018, 2019b),
and low or even undetected in radio/optical circular po-
larization (Wardle et al. 1998; Liodakis et al. 2022a).
However, scenarios invoking proton-initiated emission
(synchrotron radiation by relativistic protons, and/or
emission processes associated with cascades of leptons
produced by photo-hadronic processes, e.g., IceCube
Collaboration et al. 2018) have not been definitively
excluded. Typically, leptonic models have been more
successful in modeling low synchrotron peaked blazars
(LBL, vgyn, < 10 Hz), while hadronic models are of-
ten favored for high-synchrotron-peak sources (vsy, >
10' Hz, e.g., Bottcher et al. 2013; Cerruti et al. 2015,
2017).

Measurements of X-ray polarization can be used to
test high-energy emission processes and particle acceler-
ation in jets (e.g., Zhang & Bottcher 2013; Liodakis et al.
2019a; Tavecchio et al. 2018). Starting in January 2022,
the Imaging X-ray Polarimetry Explorer ( IXPE, Weis-
skopf et al. 2010, 2016, 2022) has been carrying out such
measurements. Detection by IXPE of high-synchrotron-
peak sources like Mrk 501 and Mrk 421 (Liodakis et al.
2022b; Di Gesu et al. 2022) has revealed stronger po-
larization at X-rays than at longer wavelengths. This is
consistent with emission by high-energy electrons that
are accelerated at a shock front with partially-ordered
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magnetic fields, after which they are advected to regions
with more turbulent fields.

Here we report the first X-ray polarimetric observa-
tions of a LBL blazar, the eponymous BL Lacertae (BL
Lac, z = 0.0686, Vermeulen et al. 1995). The X-ray
emission of BL Lac is highly variable, with an aver-
age flux of Fo_10 ey ~ 1 x 107 erg em™2 s7! (e.g.
Wehrle et al. 2016; Giommi et al. 2021; Sahakyan &
Giommi 2022; Middei et al. 2022). Moreover, BL Lac
is a very high energy (VHE) emitting source as it is
the 14th brightest AGN at ~-ray energies listed in the
Fermi 4LAC catalog (Ajello et al. 2020) and among the
few LBL sources detected in TeV ~v-rays showing fast,
even down to ~hourly timescales, flux variability (Al-
bert et al. 2007; Arlen et al. 2013). Moreover, BL Lac
has been the focus of a large number of multi-wavelength
and polarization studies (e.g., Raiteri et al. 2013; Bli-
nov et al. 2015, 2018; Weaver et al. 2020; Casadio et al.
2021).

This paper is organized as follows. We describe the
IXPE observations and X-ray data processing and anal-
ysis in section 2 and our contemporaneous observing
campaign at radio, infrared, and optical wavelengths in
section 3. Finally, we discuss and interpret our results
in section 5. A standard ACDM cosmology with Hy =
70 km s~! Mpc~?t, Q,, = 0.27 and Qy = 0.73 is adopted
throughout this work. Errors quoted in text and in plots
correspond to 1o uncertainties (Ax? = 1 for 1 parame-
ter of interest). All upper limits related to IXPE obser-
vations are quoted at 99% confidence, corresponding to
Ax? = 6.635 for 1 parameter of interest.

2. X-RAY SPECTRA AND POLARIZATION
OBSERVATIONS

BL Lac was observed with the three Detector Units
(DUs) of IXPE during 2022 May 6-14 for a net expo-
sure of 390 ks. The second observation was performed
2022 July 9-11 for a net exposure of ~116 ks. Quasi-
simultaneously with the first IXPE observation, BL Lac
was observed by the Nuclear Spectroscopic Telescope
Array (NuSTAR, Harrison et al. 2013), with a ~25 ks
exposure, and with the EPIC-pn (Striider et al. 2001)
camera on board XMM-Newton (Jansen et al. 2001). In
addition, another XMM-Newton observation was taken
simultaneously with the second IXPE observation of BL
Lac. In Appendix: A.3, we report the details on the
data reduction of the IXPE, XMM-Newton and NuS-
TAR data. The X-Ray Telescope (XRT, Burrows et al.
2005) on the Neil Gehrels Swift Observatory (Swift)
monitored the blazar from 2022 May until July. Details
on the data reduction and the results of these observa-
tions are provided in Appendix: B.

2.1. X-ray spectral analysis

We combine the IXPE Stokes I (i.e., total flux den-
sity), XMM-Newton, and (only for the first exposure)
NuSTAR data to determine the X-ray spectrum in the
0.5-79 keV energy range. We first attempt to fit the
data with a simple model of a single power-law contin-
uum with photoelectric absorption exceeding that from
gas in our Galaxy. In fact, various studies (e.g., Bania
et al. 1991; Madejski et al. 1999) have reported on the
presence of neutral absorption in this source, invoking
the presence of molecular clouds along the line of sight
to BL Lac. We thus have fit the column density re-
quiring a consistent value for both observations 1 and
2. and NuSTAR) and observation 2 (IXPE and XMM-
Newton). These steps led to a good fit with y? statis-
tic x?/d.0.f=1234/1112. The column density derived
exceeds the Galactic value as expected and the XMM-
Newton observations show bump-like residuals around
0.7 keV, which we infer as being due to an additional
spectral component. We speculate that it represents
emission from hot diffuse plasma, which we include as
an apec model in XSPEC. We fit the temperature and
the normalization of this apec component while requir-
ing its temperature and normalization to be consistent
between the two datasets. This step led us to a satisfac-
tory spectral fit (x?/d.o.f.=1169/1110). We attempted
to replace the apec component with a single Gaussian
centered at 0.7 keV; however, this returned a worse fit
with Ax?=+31 for the same number of degrees of free-
dom. Finally, the present dataset does not support the
presence of a Synchrotron component at soft X-ray en-
ergies, which would be the tail of the low energy hump
of the SED. Replacing the apec model with such a steep
power-law component degrades the quality of the fit to
the data (Ax?=+52 with two additional free parame-
ters).

The cross-normalization constants between IXPE and
XMM-Newton were consistent with unity within ~10%.
The difference between the IXPE and NuSTAR flux nor-
malizations was ~30%, although this could be mainly
ascribed to the flux level of BL Lac being higher dur-
ing the NuSTAR pointing than the average during the
IXPE exposure.

Based on our model fits, the X-ray spectrum of BL
Lac beyond ~ 2 keV was characterized by a power law
with photon index I' = 1.7440.01 and 1.87+0.06 for ob-
servations 1 and 2, respectively. The source was in a
higher flux level during the later epoch. The absorb-
ing column density is found to be Ng=2.6040.05x 102
cm ™2 and this value is in perfect agreement with the ex-
tensive analysis performed by Weaver et al. (2020). At
low energies, below the IXPE bandpass, the spectra are
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consistent with emission from hot gas (k7' = 0.38+0.04
keV). However, the physical origin of such an additional
soft component is unknown and requires additional ob-
servations to determine.

2.2. Spectro-polarimetric X-ray analysis

We searched for X-ray polarization from BL Lac by
performing a spectro-polarimetric fit of the I, @ and
U Stokes spectra over the two IXPE exposures. To
better constrain the spectral shape of BL Lac we per-
formed the spectro-polarimetric analysis also including
the XMM-Newton and NuSTAR data. Similarly to
the fit to the I Stokes spectra, we fitted simultane-
ously the Galactic column density and the apec com-
ponent, while the photon index and the normalization
of the power-law were computed for each observation.
We then accounted for the polarimetric information en-
coded in the @ and U Stokes parameters multiplying
the power-law with polconst, i.e. a XSPEC model that
assumes the polarization signal to be constant across
the IXPE energy range. Thus, the final model con-
sists of thabs x const x (apec + polconst x powerlaw), in
XSPEC notation. The constant accounts for the inter-
calibration among the different detector units. We first
fit separately the two IXPE observations with the po-
larization degree and angle free to vary between expo-
sures. This procedure leads to a best-fit of x?=1469
for 1388 d.o.f., and provides two upper limits for the
polarization degree: IIx =< 14.2% and IIx < 12.6%
(at 99% confidence level) for Obs. 1 and Obs. 2, respec-
tively. In Figure 1 we display the fit to the two IXPE
exposures and the corresponding confidence regions. In
Table 1 we report the best-fit values corresponding to
the analysis of the IXPE observations. Then we tested
a scenario where both Iy and ¥ x remained unchanged
between observations. Although blazars typically vary
on shorter timescales than two months, this test is mo-
tivated by the fact that the polarization angle in the
mm /radio energy range g (see Section 3), i.e., the seed
photons in case of synchrotron self-Compton emission, is
consistent within uncertainties between the two observa-
tions (see Appendix A). Moreover, as found for hadronic
models including polarization, X-ray polarization is ex-
pected to be less variable than at optical wavelengths
(Zhang et al. 2016). This simple test yields a compatible
fit (x?/d.0.f.=1473/1390), with the spectral parameters
being consistent with those quoted in Table 1. Also in
this case, we obtain only an upper limit to the polar-
ization degree, IIx < 9.6%, and the polarization angle
is unconstrained. We subsequently set the polarization
degree to be the same between the observations, but al-
low the polarization angle to vary. This attempt, which

Table 1. Best-fit parameters for the two IXPE observations.
The power-law normalization is in units of x10~3 photons
keV~! cm™2 s71, the apec component has a normalization of
x107%, and fluxes are x 107! erg cm 2 s~!. Errors account-
ing for the polarimetric information refer to 99% confidence
interval for 1 parameter of interest.

Model Component Obs. 1 Obs. 2
polconst Iix < 14.2% < 12.6%
¥x - -
tbabs Nut 2.60£0.05
apec kT (keV)f 0.384+0.04
normalization 3.1+£0.1
powerlaw r 1.7440.01 1.87+0.06
Norm 2.74 £ 0.05 554+0.1
Fa_g kev 0.96 + 0.03(0.05)1.56 + 0.06(0.09)

yields only a compatible fit statistic, gives IIx < 11.1%
with no information on the polarization angle. We also
tested the opposite scenario in which the polarization
angle is constant between the two IXPE exposures and
IIx varies. Such a test, to which corresponds an equiv-
alent fit statistic, led us to an unconstrained X-ray po-
larization angle and upper limits for the polarization
degrees of Ilx < 14.2% and IIx < 11.7% for the two
observations.

3. MULTI-WAVELENGTH OBSERVATIONS

During the IXPE observations, a number of tele-
scopes provided multi-wavelength polarization cover-
age: the Atacama Large Millimeter Array (ALMA),
AZT-8 (Crimean Astrophysical Observatory, 70 cm
diameter), Calar Alto (Spain, 2.2 m), Haleakala
T60 (Hawaii, USA), Institut de Radioastronomie Mil-
limétrique(TRAM, 30 m), St. Petersburg University LX-
200 (40 c¢m), Kanata telescope (Japan), Nordic Optical
Telescope (NOT, La Palma, Spain, 2.56 m), Palomar-
Hale telescope (California, USA, 5 m), Boston Univer-
sity Perkins Telescope (1.8 m, Flagstaff, Arizona, USA),
the Sierra Nevada Observatory (1.5 and 0.9 m tele-
scopes, Spain), the Skinakas observatory (Crete, Greece,
1.3 m telescope) and the Submillimeter Array (SMA).
The observations and data reduction are described in
Appendix A. Figures 3 and 4 display the optical and
infrared polarized light curves of BL Lac during the
IXPE observing windows. During the second IXPE ob-
servation, we were unable to obtain infrared polarization
data. During both IXPE observations, we find signifi-
cant variability in polarization degree and angle at mil-
limeter to optical wavelengths.

For IXPE obs. 1, the ALMA observations on May 7
yield a median radio polarization degree Ilg = 3.95 +



6 MIDDEI ET AL.

100"
[ XMM-Newton/pn N

, NuSTAR/FPMA-B

IXPE/U
IXPE/Q *H

Obs. 1}

ol

+

'
\S]

(data-model)/error

+
[\

2t

(data-model)/error

1 2 4 6 810 20 30

Energy (keV)

Yz

IXPE Obs. 1

50 70

0 Obs. 21
210k ) o
[} J
£ IXPE/I "
",{;} 10'2r 1
2105k IXPE/U ]
élo-‘H IXPE/Q ]

1075 %ﬂ |
5
=
2+2F
2
=}
£
g-z
2+2F
2
z
=}
£
8
g -2r

10
Energy (keV)
IXPE Obs. 2

U

0% 5%

1,

10% 15% 20%

Figure 1. Top panels: Best-fit to the May X-ray dataset (on the left) and the IXPE-XMM-Newton data taken during July
2022 (right plots). In the middle and bottom sub-panels, we report the residuals to the I and the U and @ spectra, respectively.
Bottom plots: Confidence regions of the model fits for the polarization angle and degree for the two observations.

0.3% at 343 GHz along position angle 1) = 23°+2°, and,
on May 9, IIg = 3.6 + 0.3% along ¥r = 33° £ 1°. The
two values of IIg are consistent between scans within
the uncertainties. This is also true for ¥z during the
May 7 observation. However, on May 9 we see a change
in g from the first to the final scan from 19° to 46°.
The median uncertainty of each measurement is +1°.
The TRAM-30m measurements are the same within the
uncertainties, which suggests that there is no significant
variability. The median value of IIg at 86 GHz is 4%
with a median uncertainty of 0.4% along a median posi-
tion angle ¢¥r = 30° £ 3°. Similarly, at 228.93 GHz, the
median ITg = 4.8 + 1.2% along median ¢ = 35° £ 7°.
No circular polarization was detected in any of the ob-
servations, with a 95% confidence-interval upper limit
of <0.44% and <0.86% for 86 GHz and 228.93 GHz, re-
spectively. We find the optical polarization degree Ilp
to vary from 1.6% to 13.7%, with a median of 6.8%. At

the same time o varies from 2° to 172° with a me-
dian of 107°, almost perpendicular to the jet axis on the
plane of the sky (10° £ 2, Weaver et al. 2022). In the
infrared, IIig varies from 0.9% to 8.4% with a median
of 3.9%. Note that, although the host galaxy has a neg-
ligible contribution to the total emission in the optical
during the IXPE observation, it is likely that the con-
tribution is much stronger in the infrared. Hence, the
II1g measurements should be treated as lower limits to
the intrinsic polarization degree. The value of ¢1g varies
from 9° to 158° with a median of ~ 83°.

During the July IXPE observation, the polarization
degree detected by the IRAM-30m Telescope decreases
at 86 GHz from 8.5% to 2.2% with a constant median ¢r
of ~ 15°, see Fig. 2. The SMA observation at 225 GHz
yields IIg = 8.8 £ 1% along g of 19 + 2°. The polar-
ization at 228 GHz is consistent within uncertainties at
about ITg = 6% along ¥ ~ 20°. At the same time the
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Table 2. The upper limits for the X-ray polarization degree
IIx derived assuming the X-ray polarization angle to be the
same as the average values for 1o and 1 r. Upper limits were
computed for both the IXPFE observations.

Optical angle 119! 1§bs?
PSPI=112° <14.2%
P gPs2=38° <11.9%

Radio angle
eI =30° < 6.2%

PeP2=18° <12.9%

optical polarization varies from 7% to 23% with a me-
dian of IIp = 14.2%, with ¥o between 26° and 59° with
a median of Yo = 42°. Tables 4 and 5 summarize the
results of the multi-wavelength polarization campaign.

4. CONNECTIONS OF THE X-RAY
POLARIZATION WITH THE RADIO AND
OPTICAL BANDS

In both leptonic and hadronic models, the X-ray po-
larimetric properties are tightly related to those at the
mm-radio and optical bands, respectively. Motivated
by that close connection, we performed additional tests,
fixing 1 x to the corresponding values of ¥ and Yo and
computing Il x for the IXPE observations. In a SSC sce-
nario, we expect the polarization angle to be similar to
the one of the millimeter-radio seed photons. On the
other hand, in hadronic scenarios, the optical polariza-
tion degree is expected to be similar to IIx. Motivated
by these expectations, we proceed to restrict the polar-
ization parameters. We therefore first restrict ¢ x to
the value of the mm-radio observations. This seems to
improve the IIx < upper limits when fitting the obser-
vations separately (Ilx < 6.2% and ITx <12.9% for Obs.
1 and 2, respectively). We repeat the exercise, but this
time we restrict ¢ x to the average value of the optical
observations. We see a marginal improvement for the
second observation with IIxy <14.2% and IIx <11.9%
for Obs. 1 and 2, respectively. Since ®¥o change by
more than 70° from the first to the second IXPE obser-
vation we do not attempt a joined fit. The derived upper
limits from these tests are also summarized in Table 2.
Although improved upper limits as low as <6.2% can be
obtained for the first IXPFE observation, none of these
attempts significantly enhanced or degraded the fit to
the data presented in section 2.2. In Table 2 we report
the corresponding upper limits from our tests.

5. DISCUSSION & CONCLUSIONS

We have presented the first X-ray polarization obser-
vations of an LBL blazar, BL Lac. The analysis of the
IXPE data only provides upper limits (corresponding

to the 99% confidence level) to the polarization degree:
IIx < 14.2% and IIx < 12.6% for the first and sec-
ond exposure, respectively. As a consequence, the po-
larization angle ¥x is unconstrained for both of the ob-
servations. The upper limit to IIx can be decreased
to as low as <6% by making assumptions for the ITx
and ¢x only for the first IXPE observation. The up-
per limits can then be compared with the polarization
at longer wavelengths. In the optical, we measure a
median IIo = 6.8% at a median angle of o = 107°
for the May observation and medians IIg = 14.2% and
1o = 42° for the July observation. We find evidence of
significant mm-radio to optical polarization variability
during both IXPE observations. Moreover, the variabil-
ity in the polarization angle is stronger in the optical.
Changes in the ¢ due to perhaps turbulence or multiple
emission regions would reduce the observed polarization
degree by 1/ V/N, where N is the number of emission
regions or turbulent cells (Marscher 2014). Considering
the IXPE upper limits derived over the observing pe-
riod, the median IIp during the May observation was a
factor of ~2.5 lower, whereas for the July observation
IIo was higher than the IIx limit.

A strong synchrotron X-ray component from ultra-
high-energy electrons can also occur in BL Lac, but in
this case the X-ray spectrum would be much steeper
than that of our model fits (Marscher et al. 2008). In a
leptonic scenario, under which X-ray and +-ray emission
arises from Compton scattering, the X-ray polarization
degree is expected to be substantially lower than that of
the seed photons (Bonometto & Saggion 1973; Nagirner
& Poutanen 1993; Poutanen 1994; Liodakis et al. 2019a;
Peirson & Romani 2019). In the case of EC scattering,
depending on the scattering geometry and isotropy of
the seed photon field, the outgoing radiation could be
either unpolarized or polarized. However, based on pre-
vious SED modeling (Bottcher & Bloom 2000; Bottcher
et al. 2013; Morris et al. 2019; MAGIC Collaboration
et al. 2019; Sahakyan & Giommi 2022) we expect SSC
emission to dominated over the EC one in the IXPE
energy band. In an SSC model, the seed photons are
expected to come from mm-radio synchrotron radiation.
The mm-radio observations give IIg ~ 4% for the first
observation and IIg ~ 6% for the second. This would
suggest an expected IIx of < 3% (Peirson & Romani
2019). Therefore, our upper limits for any X-ray po-
larization signal are consistent with a leptonic scenario.
On the other hand, in the case of hadronic processes, X-
ray polarization should be less variable, or even stable,
compared to the optical, with negligible depolarization
Zhang et al. (2016). The contribution from synchrotron
radiation by protons and secondary particles from colli-
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sions involving hadrons is expected to yield a similar, or
higher (in the case of a pure proton synchrotron model),
value of IIx compared to optical wavelengths (Zhang &
Bottcher 2013; Paliya et al. 2018; Zhang et al. 2019).
Alternative emission models involving scattering from
relativistic cold electrons are also expected to produce
much higher IIx than IIo (Begelman & Sikora 1987).
During both IXPE observations, I exceeded the 99%
upper limits of ITx on several occasions. Even consider-
ing the median IIp estimates during the IXPE observa-
tions, the optical still exceeds the X-ray upper limit for
the July observation. This difference between the opti-
cal and X-ray polarization degrees is in strong tension
with the relativistic cold electron scattering model as
well as a pure proton-synchrotron model. Although we
cannot definitively exclude contribution from hadronic
processes to the overall emission, the multiwavelegth
polarization observations provide evidence against the
hadronic interpretation. Instead, our findings favor lep-
tonic emission, and particularly Compton scattering as
the dominant mechanism for the X-ray emission in BL
Lac.
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APPENDIX

A. MULTI-WAVELENGTH OBSERVATIONS
A.1l. mm-radio observations

Radio polarization observations were obtained at millimeter and sub-millimeter wavelengths using the Atacama Large
Millimeter/sub-millimeter Array (ALMA), the Institut de Radioastronomie Millimétrique 30-m Telescope (IRAM-
30m), and the Submillimeter Array (SMA). The ALMA observations were obtained in band 7 (mean wavelength of
0.87 mm, frequency 345 GHz) on 2022 May 7 and 9. The ALMA observations were reduced using the AMAPOLA'*
polarization pipeline, which is used to estimate polarization properties from short monitoring observations of ALMA
grid sources for calibrator selection. It aims to determine the D-terms for instrumental calibration from short scans
of different sources with sufficient S/N and employs an antenna-based database for a-priori values assuming stability.
Thus the method is applicable for observations when less than 60 degrees of field rotation (parallactic angle) is
achieved on the polarization calibrator. The standard reduction procedure assumes a larger parallactic angle coverage
for the determination of the D-terms on the polarization calibrator, which are then transferred instantaneously for
the calibration of the target?:>. The SMA observation was obtained within the SMAPOL monitoring program on 10
July 2022 at 1.3 mm corresponding to 225.538 GHz. The IRAM-30m observations were performed on 2022 May 5, 7,
and 10, and again on 2022 July 8 and 11 at 3.5 mm (86.24 GHz) and 1.3 mm (228.93 GHz) as part of the IRAM’s
Polarimetric Monitoring of AGN at Millimeter Wavelengths (POLAMI) Large Project* (Agudo et al. 2018b,a; Thum
et al. 2018). In Fig. 2 we show the mm-radio polarization light curve.

A.2. Optical and infrared observations

During IXPE observation 1, BL Lac was observed in optical polarization by the AZT-8 telescope (2022 May 6-11),
the Calar Alto observatory (2022 May 7, 9, 11, and July 7-9), the Haleakala observatory T60 telescope (2022 May
9), Kanata telescope (2022 May 9), the Nordic Optical Telescope (NOT, 2022 May 11, 12, and 14 and 2022 July 7),
Palomar observatory (Hale, 2022 May 10), the Perkins observatory (2022 May 3-5, 7-11, 13-15), the St. Petersburg

! http://www.alma.cl/~skameno/AMAPOLA/

2 http://www.alma.cl/~skameno/POLBEAM/
ShortCalibrationSchemeTests20170321.pdf,http: //www.alma.
cl/~skameno/POL/ShortPOL/ShortPolCal20170830.pdf

3 http://www.alma.cl/~skameno/POL/ShortPOL/
ShortPolCal20170830.pdf

4 http://polami.iaa.es/
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Figure 2. Radio polarization vs. time for BL Lac. Top: flux density middle: polarization degree, bottom: polarization angle.
The gray shaded areas demark the duration of IXPE observations 1 and 2.

University LX-200 telescope (2022 May 6, 9, 14), the Sierra Nevada observatory (T90 and T150, 2022 May 7-13,
and July 9 ) and the Skinakas observatory (RoboPol, 2022 May 14, 16, and July 7, 9). The Calar Alto Observatory
observations used the 2.2 m telescope and the imaging polarimetric mode of the Calar Alto Faint Object Spectrograph
(CAFOS). Observations were obtained in the R, filter and reduced using both unpolarized and polarized standards
stars and following standard analysis procedures. Similar procedures and the same filter was used for the T90 and
T150 telescope observations at the Sierra Nevada Observatory. We performed R-band polarimetric observations with
the Hiroshima Optical and Near-InfraRed camera (HONIR, Akitaya et al. 2014) installed on the Kanata telescope.
The polarization degree, polarization angle, and corresponding errors were estimated from Stokes parameters obtained
from four exposures at positions 0°, 45°, 22.5°, and 67.5° of the half-wave plate for each observation (Kawabata et al.
1999). Offset angle and wiregrid depolarization were corrected using highly polarized standard stars (BD+64d106,
BD+59d389). The instrumental polarization was determined with the help of unpolarized standard stars (HD14069)
to be < 0.2%. We also obtained linear polarimetric observations with the Alhambra Faint Object Spectrograph and
Camera (ALFOSC) in B, V, R, I bands of BL Lac, along with polarized and unpolarized standard stars during each
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oo

of the observing nights for instrumental calibration. The data were reduced following standard photometric procedures
included in the Tuorla Observatory’s data reduction pipeline, described in detail in Hovatta et al. (2016) and Nilsson
et al. (2018). The T60 telescope uses the ”double-image” CCD polarimeter Dipol-2 (Piirola et al. 2014). Dipol-2 is
capable of simultaneously observing in B, V', and R filters (Piirola 1973; Berdyugin et al. 2018, 2019; Piirola et al.
2021). The instrumental polarization and zero point of the polarization angle were determined by observing polarized
and unpolarized standard stars, and the measurements are combined using the “2 x sigma-weighting algorithm”. The
standard error of the weighted means of the normalized Stokes parameters are then propagated to obtain the final
uncertainty of the polarization degree and angle (Kosenkov et al. 2017; Piirola et al. 2021). The Skinakas observatory
observations used the RoboPol instrument mounted in the 1.3-m telescope (Ramaprakash et al. 2019). RoboPol is
a novel 4-channel polarimeter that simultaneous measures the normalized Stokes ¢ and u parameters with a single
exposure and no moving parts. The data reduction and analysis pipeline is described in detail in Panopoulou et al.
(2015) and Blinov et al. (2021). The 40cm LX-200 and 70cm AZT-8 telescopes are equipped with nearly identical
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Figure 4. Infrared polarization vs. time for BL Lac. Top: magnitude middle: polarization degree, bottom: polarization angle.
The gray shaded area demarks the duration of IXPE observation 1.

imaging photo-polarimeters based on a ST-7 camera, using and swapping two Savart plates oriented 45° with respect
to each other. The observations were performed in the R-band and the data were background, bias, and flat field
corrected, as well as instrumental and interstellar polarization calibrated with the use of standard stars.

In addition to the optical measurements, we obtained observations in the J, H, and K infrared bands using the 200-
inch Palomar Hale telescope, the Kanata telescope, and the WIRC+Pol instrument (Tinyanont et al. 2019a). The Hale
telescope observations were performed in the J and H bands using a polarized grating to simultaneously measure four
linearly polarized components, while a half-wave plate improved polarimetric sensitivity by beam-swapping (Tinyanont
et al. 2019b; Millar-Blanchaer et al. 2021). The data were reduced using the WIRC+Pol Data Reduction Pipeline
software®, described in detail in Tinyanont et al. (2019a) and Masiero et al. (2022). The Kanata observation was
performed in the J-band simultaneously to the R-band observation (see above). Data from the Perkins Telescope were

5 https://github.com/WIRC-Pol /wirc_drp
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Table 3. Log of X-ray observations related to the IXPE pointings of BL Lac. The log of the Swift exposures and the
corresponding derived quantities are reported in Appendix B.

Observatory Obs. ID Obs. date Net exp.
yyyy-mm-dd ks
IXPE 01006301 2022/05/06-14  ~ 390
NuSTAR 60701036002 2022/5/6 ~ 22
XMM-Newton 0902111001 2022/5/15 ~T7
IXPE 01006701 2022/7/7-9 ~ 116
XMM-Newton 0902111301 2022/7/8-9 ~15

obtained in the H, and K bands, using the IR camera MIMIR®. One measurement consists of 6 dithering exposures of
3 s each at 16 positions of a half-wave plate, rotated in steps of 22.5° from 0 to 360°. The camera and data reduction
are described in detail in Clemens et al. (2012).

A.3. X-ray observations

We here present the data reduction of the different datasets studies in Sect. 2 and obtained using IXPE, XMM-
Newton. In Table 3, we summarize their corresponding information.

For both IXPE observations, the cleaned event files and the associated science products were obtained using a
dedicated pipeline relying on the Ftools software package and adopting the latest calibration data files from IXPE
(CALDB 20211118). The source regions for each of the three detector units (DUs) were then selected via an iterative
process aimed at maximizing the signal-to-noise ratio (SNR) in the IXPE operating energy range of 2-8 keV. In
particular, we used circular regions with radius 47" for all three DUs. A constant energy binning of 7 counts per bin
was used for @ and U stokes parameters; we required SNR> 7 in each channel for the intensity spectra. We then
performed a so-called weighted analysis method presented in Di Marco et al. (2022) (parameter STOKES=NEFF in
XSELECT) on the resulting spectra. We adopted a circular region with radius 104” to determine the I, @, and U Stokes
background spectra.

The XMM-Newton scientific products were obtained with the standard SAS routines and the latest calibration
files. The spectrum of the source was derived using a circular region (radius= 40”) centered on the source. The
background was extracted from a blank region on the Epic-pn CCD camera using a circular region of the same size.
The resulting spectrum was rebinned in order to have at least 30 counts in each bin and to avoid oversampling the
spectral resolution by a factor > 3. The NuSTAR data were calibrated and cleaned using the NuSTAR Data Analysis
Software (NuSTARDAS”, Perri et al. 2021), and the scientific products were generated with the nuproducts pipeline
using the latest calibration database (v. 20220302). The source spectrum was derived using a circular region (radius
= 70"), and a concentric annulus (rj, and roy; being 270" and 370", respectively) was used to derive the background
spectrum.

B. SWIFT-XRT OBSERVATIONS: TEMPORAL BEHAVIOR OF BL LAC

We here report on a list the Swift-XRT exposures that were obtained in the context of a monitoring campaign
aimed at tracking the flux level of BL Lac. Scientific products from the Swift-XRT exposures were derived using the
facilities provided by the Space Science Data Center (SSDC®) of the Italian Space Agency (ASI). In particular, the
source spectra were extracted with a circular region of radius ~ 47", with a concentric annulus for determination of
the background with inner(outer) radii of 120(150) arcseconds. The spectra were then binned in order to include at
least 25 counts in each bin. We modeled each of the obtained 21 XRT spectra as a simple power-law with Galactic
photoelectric absorption. This model was found to adequately reproduce the data, based on the x? statistic. We report
the 2-8 keV fluxes and the inferred photon indices in Table 6. We then used Swift light curve to study the variability
properties of BL: Lac over ~3 months preceding and including the dates in which IXPE was observing BL Lac. The
photon index as well as the 2-8 keV flux of BL: Lac were derived for each of the XRT exposure fitting a simple power
law observed for the Galaxy. Our result, quoted in Table 6, are in agreement with a harder when brighter behavior

6 https://people.bu.edu/clemens/mimir/index.html

7 https://heasarc.gsfc.nasa.gov/docs/nustar/analysis/
nustar_swguide.pdf

8 https://www.ssdc.asi.it/
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Table 4. Multi-wavelength polarization observations related to the May 2022 IXPE pointing.

Telescope X-ray flux IIx (%) on  Yx (deg) oy
IXPE 0.96 + 0.03(0.05) <14.2 - - -
XMM-Newton 0.91 +0.02(0.03) - - - -
NuSTAR 1.14 £+ 0.03(0.05) - - - -
Telescope Flux density (Jy)  Ir (%) on  Yr (deg.) oy
ALMA (0.87 mm) 5.58 +0.26 3.6£009 0.3 2609 31
POLAMI (3 mm) 7.78£0.31 40£039 0.6 30£3 1
POLAMI (1.3 mm) 6.57 £ 1.5 42412 0.6 36£79 13
Telescope Magnitude IIo (%) on Yo (deg) oy
AZT-8 & LX-200 (70 and 40 cm) 12.8 £0.1 50£03 345 116 £2 28
Calar Alto 12.8 £0.1 6.8£0.1 2.8 1281 23
Kanata (R-band) - 2.49£0.05 0 56.5+05 0
Kanata (J-band) - 3.561£0.05 0 49.0+06 O
NOT - 5.9=£3.0 3.0 140 £28 28
Palomar (J-band) - 1.70£0.27 0 137+5 0
Palomar (H-band) - 092+£0.15 0 151+5 0
Perkins (H-band) 9.69+0.2 40+£04 23 86+ 3 38
Perkins (K-band) 8.87+0.2 34+£21 2.1 9+4 37
Sierra Nevada (T150) 12.8 £0.2 6.9+ 0.6 1.8 100+3 46
Skinakas 12.68 £ 0.03 5.77+£0.1 0 71+0.5 0
T60 13.28 £ 0.03 4.28 £0.09 0 90+1 0
Nore—X

-ray fluxes correspond to the 2-8 keV energy range and are in units of 107" erg cm™2 s~!. The mm-radio flux density is in

Janskys (Jy). For the optical observations, we report R-band measurements. The infrared observations are affected by the
unpolarized host-galaxy contribution to the total light, and so should be treated as lower limits to the true II. The
uncertainties for II and 1 are either the uncertainty of the measurement or the median uncertainty in the case of multiple
measurements. orr and oy show the standard deviation of the observations.

Table 5. Multi-wavelength polarization observations related to the July 2022 IXPE observation.

Telescope X-ray flux IIx (%) on o¥x (deg.) oy
IXPE 1.56 £0.06(0.09) <126 - - -
XMM-Newton 1.60 £ 0.01(0.02) - ; - -
Telescope Flux density (Jy) IIr (%) on g (deg.) oy
POLAMI (3 mm) 13.7£0.6 54£05 3.1 15+4 2
POLAMI (1.3 mm) 6.0£0.6 6.1£1.8 1.8 209 0.2
SMA (1.3 mm) 7.0£0.7 8.8£1.0 0 19+2 0
Telescope Magnitude Ilo (%) on o (deg.) oy
Calar Alto 13.9+£0.1 159£01 52 40+£0.1 7
NOT - 17.0£0.08 O 42+4 0
Sierra Nevada (T90) 13.9£0.01 73£036 02 54+14 4
Skinakas 13.26 £0.15 132+£01 42 38+0.3 5

NoOTE—Same as for Table 4

as the 2-8 flux and I' are moderately anti-correlated with a Pearson cross-correlation coefficient of P, = —0.6 and
an accompanying null probability P(< r) = 0.004. This behavior has been already observed in blazars and BL Lac
itself (e.g. Prince 2021) and is suggestive of a non-flaring activity of the source. Interestingly, this anti-correlation is
moderately stronger if we consider the 2-10 keV flux (P, =—0.64 and P(< r) = 0.002), while no relation between
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Figure 5. Multi-mission light-curve of BL Lac as observed in the 2-8 keV energy range. Different colors account for the various
facilities. No significant intra-observation variability is observed during the first IXPE pointing, while, a flux decrease by a
factor of ~30% is observed during the second exposure.

Table 6. The Swift-XRT observations belonging to the BL Lac monitoring campaign before, during and after the two IXPE

observations.

the photon index and 0.5-2 keV flux is found in this dataset. Finally, in Fig.

Start Time Time ObsID Fluxs_g kev T
yyyy-mm-dd hh:mm:ss (MJD) (107 ergem ™2 s71)

2022-04-28 06:55:35 59697.288 00096565001 1.244-0.06 1.5440.15
2022-05-02 09:27:36 59701.394 00096565002 1.1940.06 1.694+0.15
2022-05-04 07:36:35 59703.317 00096565003 1.5040.09 1.56+0.16
2022-05-06 09:01:35 59705.376 00089271001 1.4040.15 1.574+0.11
2022-05-13 23:57:35 59712.998 00096565004 1.1740.08 1.3640.22
2022-06-12 18:40:35 59742.778 00014925008 1.3540.09 1.564+0.18
2022-06-13 15:21:45 59743.640 00014925009 1.2240.08 1.53+0.22
2022-06-14 01:16:35 59744.053 00014925010 2.1040.10 1.25+0.17
2022-06-15 05:50:35 59745.243 00014925011 1.9140.08 1.454+0.13
2022-06-16 13:47:34 59746.574 00014925012 1.8640.09 1.334+0.17
2022-06-17 04:04:35 59747.169 00014925013 2.734+0.14 1.44+0.15
2022-06-23 10:51:36 59753.452 00096990001 2.54+0.13 1.264+0.16
2022-06-30 06:56:36 59760.289 00096990002 2.31+0.12 1.494+0.16
2022-07-03 14:38:35 59763.610 00096990003 1.8040.07 1.354+0.13
2022-07-04 06:13:38 59764.259 00096990004 1.9640.08 1.454+0.12
2022-07-05 01:17:37 59765.054 00096990005 1.674+0.07 1.364+0.15
2022-07-06 04:23:36 59766.183 00096990006 2.22+0.08 1.404+0.12
2022-07-07 12:09:37 59767.506 00096990007 2.40+0.12 1.284+0.17
2022-07-09 07:22:36 59769.307 00096990008 2.01+0.11 1.36+0.19
2022-07-09 11:54:36 59769.496 00096990009 1.63+0.09 1.55+0.16
2022-07-10 13:21:36 59770.556 00096990010 1.50+£0.08 1.55+0.16

compare it with the two IXPE and XMM-Newton light-curves.
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